

DAI-003-0494007

Seat No.

B. Sc. / M. Sc. (Applied Physics) (Sem. IV) (CBCS) Examination

April - 2022

Paper-XVI: Electrodynamics & Plasma Physics

(New Course)

Faculty Code: 003

Subject Code: 0494007

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

Instructions: (1) Attempt all the questions.

- (2) Numbers in the right margin indicate marks.
- 1 Attempt any SEVEN short questions: (Two marks each) 14
 - (1) Write a statement and mathematical form of Coulomb's law.
 - (2) Define Electrostatics. Also, note down its applications & importance.
 - (3) Define PLASMA state of matter.
 - (4) What is point charges? Discuss it in context of Coulomb's law.
 - (5) What are plasma oscillations? Draw a well labelled diagram showing the mechanism of plasma oscillations.
 - (6) Define line charge density and surface charge density.
 - (7) What are three criteria for plasma?
 - (8) Draw a well-labelled diagram of Debye effect in Plasma.
 - (9) Draw a well-labelled diagram of Loss Cone.
 - (10) Define dielectric constant and strength.
- 2 (A) Write answers of any TWO:

10

- (1) Derive an expression of Maxwell's Equation: Ampere's Circuit Law.
- (2) Define Faraday's law in electrostatics. Also, derive relationship between electric field intensity and electric flux density.

		(4) Write a brief note on Coulomb's law with its applications and limitations.	
	(B)	Write answer of any ONE:	4
		(1) Write a short note on electric scalar potential.	
		(2) Write a brief note on energy density in electrostatic field.	
3	(A)	Write answers of any TWO:	10
		(1) Write mathematical expression of Poynting's theorem and explain each term with necessary figures.	
		(2) Draw a neat figure explaining dielectric-dielectric boundary condition and explain it.	
		(3) Enlist Maxwell's equations in final form. Explain its physical significant.	
		(4) Write a note on Faraday's law of electromagnetic induction.	
	(B)	Write answer of any ONE:	4
		(1) State and explain Biot Sawart's Law.	
		(2) What is static Electric Field? Enlist different applications of it.	
4	(A)	Write answers of any TWO:	10
		(1) Explain magnetic mirror effect in Plasma. Hence comment on invariance of μ .	
		(2) Obtain a fluid equation for plasma and compare it with ordinary fluid equation.	
		(3) Write a note on production of plasma.	
		(4) Describe in detail various applications of plasma.	
	(B)	Write answer of any ONE:	4
		(1) Describe the effect of application of curved magnetic field on the motion of charged particle in plasma.	
		(2) Using Debye effect in plasma, prove the diamagnetic nature of plasma.	

2

[Contd...

DAI-003-0494007]

(3) Derive first Maxwell's equation: Conservative

nature of electrostatic field.

5 (A) Write answers of any TWO:

- 10
- (1) "99 % of universe consists of Plasma naturally. We live in 1 % of universe, on Earth, where plasma do not occur naturally" Explain why?
- (2) Derive an expression for the plasma frequency (ω_p) .
- (3) Describe the effect of GRAD B field applied perpendicular to B on the motion of plasma particle.
- (4) Explain magnetic mirror effect in Plasma. Hence, comment on invariance of μ .
- (B) Write answers of any ONE:

4

- (1) Write a note on natural and artificial occurrence of Plasma.
- (2) Compute λ_D and N_D for the following
 - (a) a glow discharge with n =10 16 m $^{-3}$ & $\rm kT_{e}$ = $\rm 2eV$
 - (b) a θ pinch with n =10²³m⁻³ & kT_e = 800 eV